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It is well known that statistical mechanics systems exhibit subtle behavior in high dimensions. In this paper,
we show that certain natural soft-core models, such as the Gaussian core model, have unexpectedly complex
ground states even in relatively low dimensions. Specifically, we disprove a conjecture of Torquato and
Stillinger, who predicted that dilute ground states of the Gaussian core model in dimensions 2 through 8 would
be Bravais lattices. We show that in dimensions 5 and 7, there are in fact lower-energy non-Bravais lattices.
�The nearest three-dimensional analog is the hexagonal close-packing, but it has higher energy than the
face-centered cubic lattice.� We believe these phenomena are in fact quite widespread, and we relate them to
decorrelation in high dimensions.
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I. INTRODUCTION

One of the most natural soft-core models in statistical
mechanics is the Gaussian core model �introduced by Still-
inger �1��, in which identical particles interact via a repulsive
Gaussian pair potential. This is not only a beautiful theoret-
ical model, but also a reasonable model for the effective
interaction �via entropic repulsion� between the centers of
mass of two polymers, namely, the Flory-Krigbaum potential
�2,3�. Much work has gone into characterizing the phase dia-
gram and ground states of the Gaussian core model �4,5�.

We use the Gaussian core model as a test case for study-
ing the emergence of long-range structure in classical ground
states. In two or three dimensions, these ground states are
typically lattices, and even Bravais lattices. The theory be-
hind this phenomenon is poorly understood: the Lennard-
Jones potential in two dimensions has been rigorously ana-
lyzed by Theil �6�, and Sütő �7,8� has analyzed potential
functions whose Fourier transforms are nonnegative and
have compact support, but for no purely repulsive soft-core
potential in more than one dimension is there a compelling
argument for crystallization �let alone a proof�. In the present
paper, we show the subtlety of this problem by exhibiting
counterintuitive ground states with different structure than
anticipated.

Specifically, we study the Gaussian core model for dilute
systems in high-dimensional spaces. Although that may
sound arcane, such systems play an important role in statis-
tical physics. First, they include sphere packing problems as
a limiting case. Packing in high dimensions is of fundamen-
tal importance in communication and information theory, be-
cause �as Shannon discovered� finding codes for efficient
communication in the presence of noise amounts to a
packing problem in the high-dimensional space of possible
signals.

Second, such systems provide an intriguing test case for
the decorrelation effect, a fundamental phenomenon pre-
dicted by Torquato and Stillinger �9�: in loose terms, uncon-
strained spatial correlations should vanish asymptotically in
high dimensions, and all multibody correlations will be re-
ducible to the pair correlation function. Although it seems
difficult to justify rigorously, decorrelation leads to surpris-
ing conjectures such as the existence of extraordinarily dense
disordered packings in high dimensions �with important im-
plications in information theory�. See also Ref. �10� for a
replica symmetry-breaking approach to amorphous packings
in high dimensions.

This line of reasoning suggests that glassy states of matter
are intrinsically more stable than crystals in high dimensions,
which stands in stark contrast to intuition derived from most
two-or three-dimensional systems. In three dimensions, for
example, the low-density ground state for the Gaussian core
model is the face-centered cubic �fcc� lattice, which has
lower energy than the competing hexagonally close-packed
�hcp� lattice, let alone disordered structures. In the present
paper, we show that the opposite happens in as few as five
dimensions: relatively exotic non-Bravais lattices improve
on more familiar structures. To find this behavior in such a
low dimension is unexpected, and while we cannot demon-
strate the full decorrelation effect �for example, with com-
pletely amorphous packings�, our results show that the role
of order and structure in even low-dimensional ground states
is more subtle than was previously realized.

Our direct motivation is a recent prediction by Torquato
and Stillinger �11� for the ground states of the Gaussian core
model in moderately high dimensions �up through R8 and
also R24�. Specifically, at sufficiently low particle density,
they conjectured that the ground states are the Bravais lat-
tices corresponding to the densest known sphere packings,
and at sufficiently high particle density they conjectured that
the ground states were the reciprocal Bravais lattices. In the
case of R2, R8, and R24, this agrees with an earlier conjecture
of Cohn and Kumar �conjecture 9.4 in Ref. �12��. Zachary,
Stillinger, and Torquato �13� have given strong numerical
evidence that these are indeed the true ground states among
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known families of Bravais lattices. However, in this paper
we disprove Torquato and Stillinger’s conjecture by exhibit-
ing non-Bravais lattices with lower energy in the low density
limit in R5 and R7.

These improved lattices in fact correspond to tight sphere
packings �i.e., sphere packings that are not only as dense as
possible globally, but also locally, in the sense that there are
no missing spheres, small gaps, etc.�. Conway and Sloane
�14� provided a conjecturally complete list of tight packings
in low dimensions, and our ground states can be found in
their list. They stand in the same relationship to the optimal
Bravais lattices as the hcp packing stands to the fcc packing
in R3, but the energy comparisons work out notably differ-
ently. This is in effect another facet of decorrelation. Even
within the restrictive class of tight packings, in high dimen-
sions Bravais lattices are no longer energetically favored.
Instead, somewhat less regular structures are preferred.

For comparison to the mathematical literature �and, in
particular, Ref. �14��, note that mathematicians use “lattice”
to mean “Bravais lattice” and “periodic packing” to mean
“lattice with a basis.” In this paper, we follow the physics
terminology.

II. THETA SERIES

All of our work in this paper takes place in the low den-
sity limit. Because of the scaling invariance of Euclidean
space, we can instead fix the particle density and rescale the
Gaussian. Specifically, we use the potential function V�r�
=e−�r2

between two particles at distance r, and we let � tend
to infinity, which corresponds to taking the low-density limit.

The theta series for a packing P �i.e., a collection of par-
ticle locations� is a generating function that describes the
average number of particles at a given distance from a par-
ticle in P. Specifically,

�P�q� = �
r

Nrq
r2

,

where the sum is over all distances r between points in the
packing, Nr denotes the average over all x�P of the number
of y�P such that �x−y�=r, and q is a formal variable. The
use of r2 rather than r in the exponent is traditional in math-
ematics. Note that the theta series encodes the same informa-
tion as the pair correlation function; we use this notation
since it is convenient for the Gaussian core model.

Under the Gaussian core model potential function V�r�
=e−�r2

, the average energy per point in P equals (�P�e−��
−1) /2. �We subtract 1 to correct for the r=0 term in the theta
series, which would correspond to a self-interaction, and we
divide by 2 to avoid double counting.� Thus, computing theta
series is exactly the same as computing energy in the Gauss-
ian core model. The limit as �→� of energy corresponds to
the limit as q→0 of the theta series.

Given two packings with the same density �i.e., the same
number of particles per unit volume in space�, we can easily
compare their behavior in the q→0 limit. Suppose their theta
series are

�1 = 1 + ar1
qr1

2
+ ar2

qr2
2

+ ¯

and

�2 = 1 + bs1
qs1

2
+ bs2

qs2
2

+ ¯

with r1�r2�¯ and s1�s2�¯. To compare �1 with �2,
we need only consider the first term at which they differ. If
r1�s1, then �1��2 for small q; if r1=s1, then the compari-
son amounts to whether ar1

�bs1
. If r1=s1 and ar1

=bs1
, then

we must proceed to the next term.
Corresponding to any point configuration in Rn, we obtain

a sphere packing by centering identical spheres at the points
of the configuration, with the maximal possible radius sub-
ject to avoiding overlap. The density of the packing is the
fraction of space covered. To avoid confusion, we will dis-
tinguish between the particle density �the number of particles
per unit volume in space� and the packing density �the frac-
tion of space covered by balls�.

As pointed out above, maximizing packing density is a
consequence of minimizing energy in the Gaussian core
model in the �→� limit �with fixed particle density�: the
dominant contribution to the Gaussian energy comes from
the smallest distance between points, which is large exactly
when the packing density is large. In other words, the prob-
lem of maximizing the sphere packing density arises natu-
rally as the low-density limit of the Gaussian core model.

III. TIGHT PACKINGS

In most dimensions, the sphere packing problem exhibits
high degeneracy, in the sense that there are many geometri-
cally distinct, optimal solutions �such as in three dimensions,
with the fcc and hcp packings and their relatives�. Conway
and Sloane �14� gave a conjectural classification of all the
tight packings in low dimensions. Here, tight means roughly
that the global density is maximized and furthermore no lo-
cal changes can add more spheres. �For example, removing
one sphere from a dense packing leaves the global density
unchanged, but the result is no longer tight.� The precise
definition of tightness in Ref. �14� is problematic; see Ref.
�15� for details on the problem and better definitions. Be-
cause they recognized that their definition was only tentative,
Conway and Sloane characterized tightness by articulating
“postulates” that they felt a correct definition should satisfy.
These postulates are by no means obvious statements; in-
stead, they are empirical observations from Conway and
Sloane’s study of the packing problem.

Conway and Sloane �14� postulate that, in dimensions up
to 8, every tight packing fibers over a tight packing whose
dimension is the previous power of 2. To say that a packing
P fibers over Q means that P can be decomposed into par-
allel layers lying in dim�Q�-dimensional subspaces, each of
which is a packing isometric to Q. �In fact, in tight packings
of dimensions up to 8 it will be a translate of Q.� The loca-
tions of these parallel subspaces should themselves be deter-
mined by another tight packing. Although the Conway and
Sloane postulates are only conjectures, they seem likely to be
true and in this paper we assume their truth �but we note
which ones are required for each theorem�.
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IV. DIMENSIONS UP TO 4

In R1, there is exactly one tight packing, namely that
given by the integers. It is provably optimal for the Gaussian
core model by proposition 9.6 in Ref. �12�.

In R2, the triangular lattice A2 is the only tight packing.
Montgomery �16� showed that it is optimal among all Bra-
vais lattices for the Gaussian core model, and it was conjec-
tured in Ref. �12� that it is optimal among all lattices.

In R3, all tight packings fiber over the triangular lattice
A2. In other words, they are formed by stacking triangular
layers, with the layers nestled together as densely as pos-
sible; each additional layer involves a binary choice for how
to place it relative to the previous layer. These are the Barlow
packings �i.e., the stacking variants of the fcc and hcp pack-
ings�. It is not hard to check that, among these packings, the
face-centered cubic lattice minimizes energy in the Gaussian
core model in the low particle-density limit. This is consis-
tent with the conjecture in Ref. �11�.

In R4, there is only one tight packing, namely the D4 or
checkerboard lattice �it is shown in Ref. �14� that only one
tight packing fibers over A2�. It is defined to be the set of all
integral points whose coordinates have even sum:

D4 = �x � Z4 : �
i=1

4

xi � 0 �mod 2�	 .

The uniqueness of D4 is remarkable, compared with the di-
versity of tight packings in R3, and the D4 lattice plays a
fundamental role as a building block for higher-dimensional
structures. It also appears that, much like the triangular lat-
tice, D4 may be universally optimal, in the sense that it is the
ground state of the Gaussian core model at any density.

V. DIMENSION 5

In R5, every tight packing fibers over D4, with the dis-
tance between successive layers being 1. To specify such a
packing, one need only specify how each four-dimensional
layer is translated relative to its neighbors. The deep holes in
D4 �the points in space furthest from the lattice� are located
at �1, 0,0,0�, �1 /2,1 /2,1 /2,1 /2�, and �1 /2,1 /2,1 /2,−1 /2�,
as well as of course the translates of these points by vectors
in D4. Each layer of a tight packing in R5 must either be an
untranslated copy of D4 or be translated by one of these
vectors, so that the distance between layers is minimized;
furthermore, adjacent layers must be translated by different
vectors. In other words, the spheres in each layer must be
nestled into the gaps in the adjacent layers.

If we let a denote the translation vector �0,0,0,0�, b denote
�1,0,0,0�, etc., then each layer must be translated by one of a,
b, c, or d, and no two adjacent layers can be translated by the
same vector. In other words, a tight packing in R5 is specified
by a four-coloring of the integers �if we treat a, b, c, and d as
“colors”�.

For example, the D5 packing, which is the Bravais lattice
with the highest packing density, corresponds to the follow-
ing coloring:

. . . . . .� � � � �a b a b a

Note that the symmetries of the D4 lattice arbitrarily permute
a, b, c, and d, so the choice of labeling is irrelevant. For D5,
all that matters is that the layers alternate between two col-
ors.

Conway and Sloane found that four tight packings are
uniform, in the sense that all spheres play the same role
�rather than the less symmetric situation of having several
inequivalent classes of spheres�. In addition to D5=�5

1, the
three others correspond to the following patterns:

�5
2 : ¯ abcdabcd ¯ ,

�5
3 : ¯ abcabc ¯ ,

�5
4 : ¯ bacbdcadbacbdcad ¯ .

These three additional lattices are not Bravais lattices, but
rather lattices with bases.

One can calculate that the theta series for �5
1 is 1+40q2

+90q4+240q6+¯, while the theta series of �5
2 is 1+40q2

+88q4+16q5+¯. It follows that �5
2 has lower energy than

D5 in the q→0 limit, which disproves Torquato and Still-
inger’s conjecture. In fact, the situation is even worse for D5,
which is not only suboptimal but in fact the worst tight pack-
ing of all.

Theorem 1. Under postulates 2, 4, and 5 of Ref. �14�, the
Bravais lattice D5 has the highest energy among all the tight
five-dimensional lattices, in the q→0 limit.

To complete this calculation, we require four geometrical
facts about D4. Specifically, each lattice point has 24 neigh-
boring lattice points at squared distance 2, the next closest
lattice points are 24 more at squared distance 4, each deep
hole has 8 neighboring lattice points at squared distance 1,
and the next closest lattice points to a deep hole are 32 points
at squared distance 3. These assertions are easily checked by
a short calculation.

Proof. Let � be a tight five-dimensional lattice, obtained
by a four-coloring of the integers. We first observe that every
sphere in � must have 40 neighbors at squared distance 2,
for the following reason. Without loss of generality, we may
assume that layer 0 is colored a and layer 1 is colored b
�since the different deep holes are equivalent under the sym-
metries of D4�. Now, layer −1 cannot be colored a either, so
the layers 0, 1, and −1 contribute 24+8+8=40 neighbors of
a given sphere in layer 0. �Every sphere in D4 has 24 neigh-
bors, which accounts for the 24 from layer 0, and each deep
hole in D4 is at distance 1 from 8 points of D4.� Therefore the
theta series of � must start with 1+40q2+¯.

The next smallest possible squared distance in � is 4
�squared distance 3 does not occur in D4, and it cannot occur
between adjacent layers since that would amount to having a
lattice point at squared distance 2 from a deep hole�. There
are 24 spheres at that distance in D4, and 32 in each of layers
�1, for a total of 88. The only way there can be more is if
they come from layers �2, and each of those layers contrib-
utes one sphere �lying over the origin� if and only if it is
colored the same as layer 0. Since D5 corresponds to the
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coloring ¯abababa¯, its theta function has the maximum
contribution to the q4 term, making it the worst for energy as
q→0. Furthermore, among all tight lattices only D5 maxi-
mizes that term, so it is the unique pessimum. �

The lattice �5
2 turns out to be the best.

Theorem 2. Under postulates 2, 4, and 5 of Ref. �14�, the
lattice �5

2 has the lowest energy among all the tight five-
dimensional lattices, in the q→0 limit.

Proof. The proof is similar to that of the previous theo-
rem. Let � be a tight packing as above, fibered over D4. We
may assume as before that layer 0 is colored a. The first two
terms of the theta series of � are 1 and 40q2. Now, if layer 2
or layer −2 were colored a, then � would have a larger q4

term than �5
2, making it worse for potential energy in the q

→0 limit. Therefore we may assume neither 2 nor −2 is
colored a. The theta series is now determined up to the q8

term, and it equals 1+40q2+88q4+16q5+192q6+64q7

+152q8+¯.
The q9 term is not yet determined, since it depends on

layers 3 and −3. Merely being three layers apart contributes
32 to the squared distance, so they contribute to the q9 term if
and only if they are colored a. Thus, to minimize energy they
must not be colored a. In other words, two layers of the same
color must be separated by at least 4. The only way to do this
is to color the layers ¯abcdabcd¯, up to permutations of
the four colors. Since permuting the four colors will not
change the resulting lattice �because of the symmetries of
D4�, we see that �5

2 is the unique best lattice among all the
tight five-dimensional lattices in the q→0 limit. �

VI. DIMENSION 6

In R6, the way to form tight packings is again to fiber over
D4, and we must use the triangular lattice A2 to arrange the
fibers �with A2 normalized so the closest lattice points are at
distance 1�. Thus, we are looking for four-colorings of the
triangular lattice A2, where the colors specify which transla-
tion vector to use for the copy of D4. As in the previous
dimension, the separation between adjacent layers will be 1.

The E6 lattice, which is the Bravais lattice with the high-
est packing density, is given by the following coloring:

� � � � �a c a c a

� � �a c a

� � �a c a

� � � �b d b d

� � � �d b d b

The theta series of E6 is 1+72q2+270q4+936q6+2160q8

+¯. As shown by Conway and Sloane, there are three other
uniform packings, corresponding to the following possibili-
ties for the six neighbors surrounding a central a:

�6
2 : bcbdcd ,

�6
3 : bcbcbc ,

�6
4 : bcbcbd .

In contrast to the five-dimensional case, the Bravais lattice
E6 is in fact optimal among all tight lattices in the q→0
limit.

Theorem 3. Under postulates 2, 4, and 6 of Ref. �14�, the
Bravais lattice E6 has the lowest energy among all the tight
six-dimensional lattices, in the q→0 limit.

Proof. Let � be a tight packing formed as above by four-
coloring the triangular lattice. Let us assume that the central
sphere is colored a. The squared distances in the A2 lattice
are 1,3,4…, so neighbors at squared distance 2 in � can
come only from the central layer and its six adjacent layers.
The number of these vectors is 24+6·8=72, which is in ac-
cordance with the theta function of E6. The next possible
squared distance is 3. Note that this distance does not occur
in E6, since in the coloring above, there are no two spheres at
squared distance 3 which have the same color. But in fact,
the coloring above is the only coloring with this property �up
to a permutation of the colors a, b, c, d, of course, but that is
irrelevant because of the symmetries of D4�. To see this, start
with the central sphere colored a, and notice that the six
spheres around it must be colored bcdbcd �or bdcbdc� to
avoid two spheres of the same color being 
3 units apart.
One can then apply the argument to the six spheres centered
around one of these six neighbors and proceed outward, to
arrive at a unique packing: namely, the one above. This
shows that E6 is indeed the best for energy in the q→0 limit,
among all tight lattices. �

One can also determine the worst tight packing.
Theorem 4. Under postulates 2, 4, and 6 of Ref. �14�, the

lattice �6
3 has the highest energy among all the tight six-

dimensional lattices, in the q→0 limit.
We omit the details of the proof. However, the calculation

amounts to showing that the �6
3 coloring maximizes the

number of identically colored spheres at squared distance 3
in A2. In the following picture of the coloring, the six bold
circles are at squared distance 3 from the central circle:

� �� �c a b

�� � � ��a b c a

� � � � �b c a b c

�� � � ��a b c a

� �� �c a b

VII. DIMENSION 7

Finally, in dimension 7 the optimal Bravais lattice E7 is
neither the worst nor the best for energy among tight pack-
ings in the low particle-density limit. According to Ref. �14�,
each tight packing in R7 fibers over D4, and the four-
dimensional layers are arranged using a tight packing in R3

with adjacent D4 layers separated by 1. To specify a four-
coloring of the three-dimensional packing, we need only
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specify it on a single triangular layer, since each such layer
determines the colors on both adjacent layers and hence on
every layer.

We cannot use an arbitrary four-coloring of the triangular
layer, since some colorings do not extend consistently to the
other layers. Conway and Sloane showed that the condition
for extending consistently is that the coloring should have
“period 2” in the following sense: the packing should decom-
pose into parallel strings of adjacent spheres, so that in each
string the colors alternate between two possibilities. For ex-
ample, the E6 coloring shown in the previous section has this
property �the strings lie along horizontal lines�, while the �6

3

coloring does not.
To obtain E7, we use the face-centered cubic as our tight

packing in R3, and we use the same coloring of a triangular
layer as was used to construct E6. We get the picture in Fig.
1, which shows three triangular layers of the fcc lattice sur-
rounding a central ball colored a �the dotted lines show how
the layers are aligned, and the different styles of circles are
for reference in the argument below�.

The theta series of E7 is 1+126q2+756q4+¯, and we can
see the first nontrivial term as follows. A point in the D4
layer corresponding to the central circle colored a above has
24 neighbors at squared distance 2 in the same D4 layer, 12·8
in neighboring D4 layers �8 each from the 12 neighbors in
the face-centered cubic, which have bold circles in Fig. 1�,
and 6 from non-neighboring D4 layers �1 each from the 6
points in the face-centered cubic at squared distance 2, which
are shown with two nested circles in Fig. 1 and are each
colored a�.

To improve upon E7 in the q→0 limit, we can use the �6
2

coloring of a triangular layer; the resulting tight packing is
called �7

3. One can see from Fig. 2 that among the final six
points in the calculation above, only four share the same

color as the central point. Thus, the theta series of �7
3 begins

1+124q2+¯, which is an improvement over the E7 lattice,
and the next squared distance is 4.

To construct a tight packing with higher energy than E7 in
the low-density limit, we can use the hexagonal close pack-
ing in R3, while using the same coloring on a triangular layer
as for E7 �namely, the one also used to construct E6�. The
resulting coloring is shown in Fig. 3, and the packing is
called �7

2. The large triangular layer at the bottom of the
figure plays the same role as the central layer in the previous
figures. We have not drawn the layers below it because the
hcp packing is mirror symmetric about each layer.

The theta series begins 1+126q2+¯ for the same reason
as above, but the next term is 2q8/3, which occurs between
nonadjacent triangular layers. Specifically, each point in the
hcp packing is at distance 
8 /3 �i.e., twice the height 
2 /3
of a regular tetrahedron with edge length 1� from two points,
which are two layers above and below it. The dotted lines in
Fig. 3 connect such points. Because the corresponding points
always have the same color, the theta series of �7

2 beings 1
+126q2+2q8/3+¯, and hence �7

2 has higher energy than E7
in the q→0 limit.

There is one further possibility worth analyzing, namely
the coloring of the hcp lattice shown in Fig. 4 which uses the
�6

2 coloring on a triangular layer and leads to a tight packing
called �7

4�. Its theta series begins 1+124q2+2q8/3+¯.
The four tight packings we have analyzed in this section

are of course not the only tight packings, but they are the
only uniform ones. Their local configurations cover enough
possibilities to determine the lowest- and highest-energy
tight packings. Specifically, there are relatively few period 2
colorings of a triangular layer. Observe the large triangular
layers in the figures: without loss of generality we can as-
sume that the middle horizontal row in the large triangular
layer is colored acaca �by the period 2 assumption�, as is
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FIG. 1. The four-coloring of the fcc lattice used to obtain E7.
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FIG. 2. The four-coloring of the fcc lattice used to obtained
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FIG. 3. The four-coloring of the hcp lattice used to obtained
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shown in each figure. Then there are only two variables in
the pictures. The first is whether the adjacent two horizontal
rows line up with b above b and d above d �as in Figs. 2 and
4� or whether they are staggered �as in the remaining two
figures�. The second variable is whether the triangular layers
are themselves staggered �as in the fcc lattice� or mirror-
symmetric �as in the hcp lattice�. If the pictures were to be
enlarged, more of these choices would arise, but within the
scope of what has been drawn, there are only these four
possibilities. It follows that �7

3 has the best local configura-
tion at each point, while �7

2 has the worst at each point.
Theorem 5. Under postulates 2, 3, 4, and 7 of Ref. �14�,

the lattice �7
3 has the lowest energy among all the tight

seven-dimensional lattices, in the q→0 limit, and �7
2 has the

highest.

VIII. HIGHER DIMENSIONS

In R8 there is a unique tight packing, namely the E8 lat-
tice, which is almost certainly the ground state for the Gauss-
ian core model. Because of the uniqueness of E8, the ap-
proach used in R5 and R7 does not apply.

Above dimension 8, the approach of Ref. �14� breaks
down, and tight packings no longer fiber nicely. Outside of a
handful of exceptional dimensions �certainly 24 and perhaps
12 or 16�, we expect that the ground states of the Gaussian
core model become quite complicated.

IX. CONCLUSIONS AND DISCUSSION

We have shown that the ground states of the Gaussian
core model can be unexpectedly complex. Specifically, in
five and seven dimensions, the ground states are not Bravais
lattices, which contrasts with the more familiar behavior in
two or three dimensions. This behavior is not limited to the
Gaussian core model. The non-Bravais lattices studied in this
paper are in fact superior for a wide range of soft-core mod-
els, including for example inverse power laws with high ex-
ponents. �Note that inverse power laws are scale-free, so in
that case our results hold for all densities.�

These phenomena are characteristic of high dimensions,
and they provide support for the Torquato-Stillinger decorre-
lation principle. As the dimension increases, familiar symme-
tries become increasingly likely to be broken. One notewor-
thy example is the kissing configurations in five dimensions
�i.e., the spherical configurations formed by the points of
tangency with adjacent spheres�. The D5 lattice’s kissing
configuration is highly symmetrical; in suitable coordinates it
is given by the vectors ��1, �1,0 ,0 ,0� and all vectors ob-
tained by permuting the coordinates. By contrast, the kissing
configuration of �5

2 is far less symmetrical. To form it, re-
place the eight vectors that have a 1 in the first coordinate
with the eight vectors �1, �1 /2, �1 /2, �1 /2, �1 /2�,
where the number of minus signs must be even. This clearly
breaks the symmetry, and indeed the size of the symmetry
group is reduced by a factor of 10 �from 3840 to 384�. Nev-
ertheless, �5

2 has lower energy than D5, and its kissing con-
figuration alone has lower energy than that of D5 as spherical

configurations. Symmetry simply does not align with consid-
erations of energy.

Because of the connections between high-dimensional
sphere packing and information theory, these issues shed
light on coding theory. Computer scientists and engineers
have learned through long experience that efficient error-
correcting codes should be chosen to be pseudo-random
�truly random would be even better, but it is generally not
practical�. For example, MacKay �Ref. �17�, p. 596� summa-
rizes his coding theory advice as follows: “The best solution
to the communication problem is: Combine a simple,
pseudo-random code with a message-passing decoder.” From
a naive perspective, this situation is puzzling, since one
might expect that highly structured codes would offer the
most scope for powerful algorithms. Instead, elaborate alge-
braic structure seems incompatible with high-performance
coding. This is not purely a geometric question, because of
the role of algorithms, but it is largely geometric, and the
underlying geometry involves the same decorrelation effect
observed in physics. This emphasizes the need for a detailed
theoretical understanding of high-dimensional packing and
related statistical mechanics models.

One natural area for further exploration would be non-
Euclidean spaces. Introducing curvature illuminates the
problem of geometrical frustration, in which ideal local con-
figurations do not extend consistently to global arrange-
ments. Specifically, curvature may relieve �or introduce�
frustration, and comparing results in different curvatures
clarifies the role of frustration. See, for example, Ref. �18�.
Much work has been done in positively curved spaces such
as spheres, and Modes and Kamien �19,20� have recently
studied hard-core models in negatively curved two-
dimensional space. It would be intriguing to extend this work
to higher dimensions.

Another area for future investigation is more sophisticated
models than the Gaussian core model. For example, in the
Ziherl-Kamien theory of micellar crystals �21,22�, area-
minimizing effects �as in soap froths� frustrate the close-
packing one expects from a hard core. It would be interesting
to study dimensional trends in such systems.

We conclude with a few specific open problems about the
Gaussian core model.

�1� We have been able to address the low-density limit,
but our approach says nothing about the high-density limit.
Are Bravais lattices optimal for the Gaussian core model at
high density in low dimensions, as Torquato and Stillinger
�11� conjectured? We suspect that Bravais lattices may again
be suboptimal in as few as five dimensions, but that is
merely a guess.

�2� In this paper, we were lucky to be able to construct
improved non-Bravais lattices essentially by careful modifi-
cation of the Bravais lattices �much as the hcp packing can
be obtained by modifying the fcc lattice�. It is unlikely that
this sort of modification will yield a complete picture of the
Gaussian core model’s ground states at all densities. In the
absence of new geometrical ideas, it is natural to turn to
numerical simulations. Unfortunately, simulations become
increasingly difficult as the dimension increases, because of
the curse of dimensionality �the number of particles required
increases exponentially as a function of dimension�. Can one
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develop an efficient enough simulator to perform useful
work in four, five, or even six dimensions? Skoge, Donev,
Stillinger, and Torquato �23� have performed such simula-
tions to compute jammed hard-core packings, but that prob-
lem may be somewhat easier as there are no long-range in-
teractions.

�3� Is the D4 lattice universally optimal in R4? �In other
words, is it the ground state of the Gaussian core model at
every density?� All available evidence suggests that the an-
swer is yes, except for one observation of Cohn, Conway,
Elkies, and Kumar �24�. They show that the D4 kissing con-
figuration of 24 points does not form a universally optimal
spherical configuration, by finding a competing family of
configurations that occasionally beats it. �By contrast, Cohn

and Kumar �12� proved that the E8 kissing configuration is
universally optimal.� Unfortunately, the spherical competi-
tors do not seem to extend to Euclidean packings. Because
D4 is such a symmetrical and beautiful structure, it would be
interesting to know more definitively whether it is univer-
sally optimal. Simulations could help resolve this issue.
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